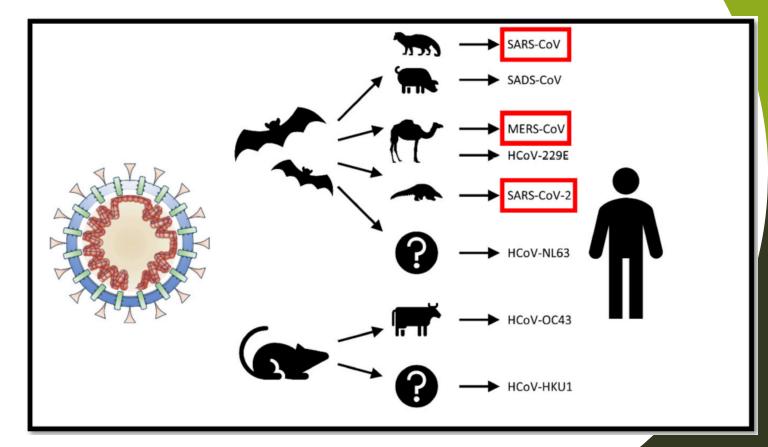
兒童新型冠病毒感染 之國內外流行狀況

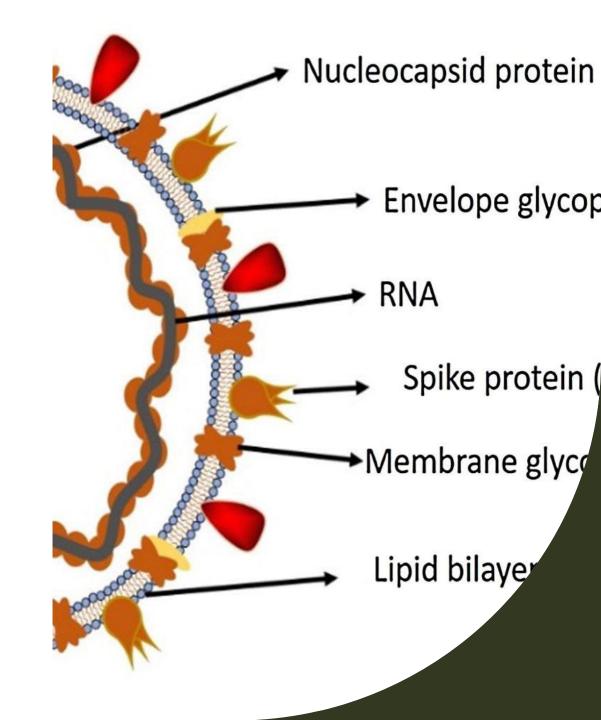
林口長庚醫院

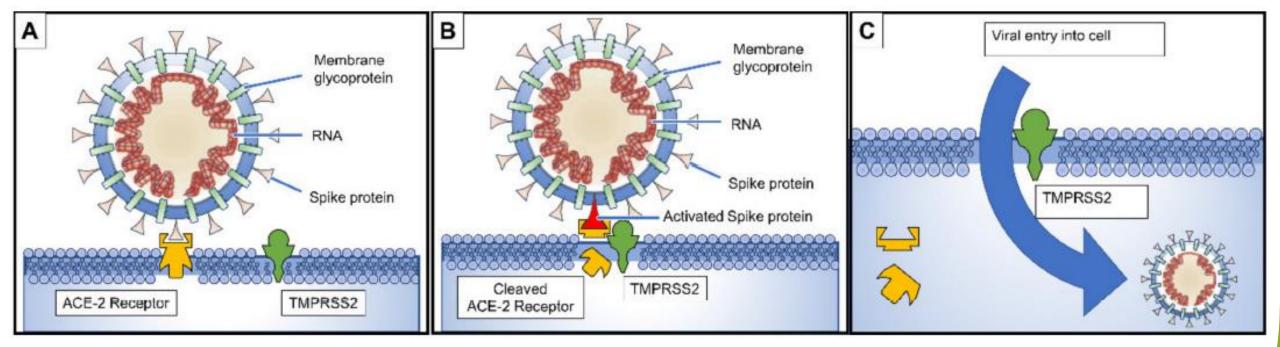
賴申豪


Coronavirus SARS-CoV-2 COVID-19

What is Coronavirus & COVID-19

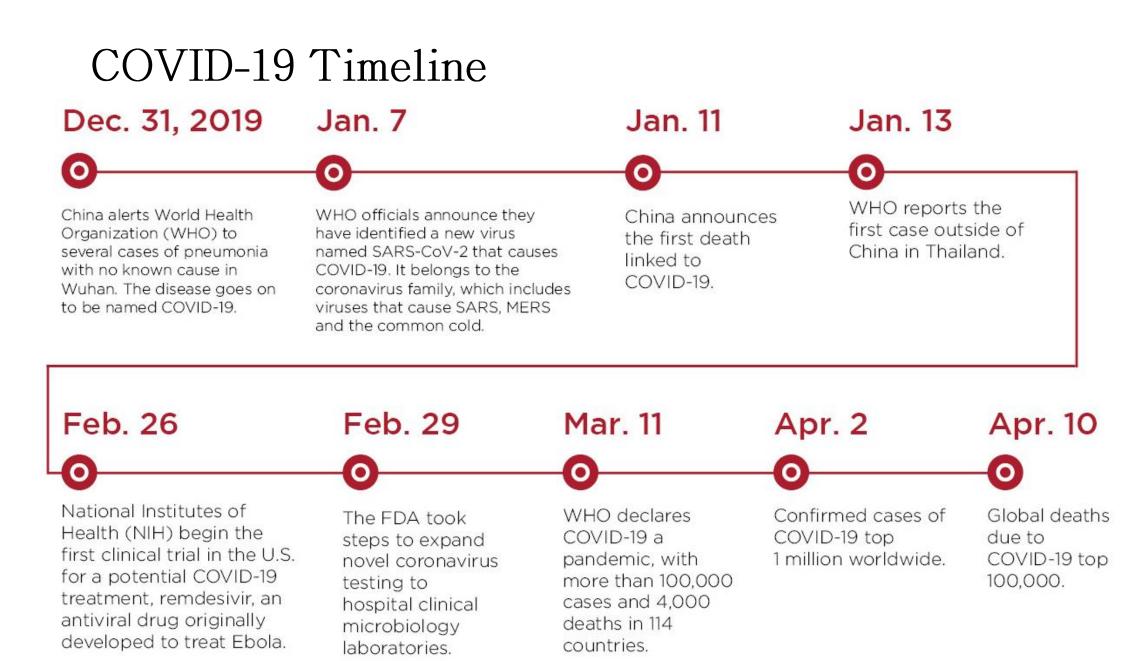
- Coronaviruses are a large family of viruses, some cause illness in humans, and others cause illness in animals, such as bats, camels, and civets.
- Human coronaviruses cause mild illness, such as the common cold
- Severe acute respiratory syndrome (SARS) is a viral respiratory illness caused by a coronavirus, called SARS-associated coronavirus (SARS-CoV)
- Previous Coronaviruses have included SARS- CoV and MERS-CoV
- Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus that has not been previously identified in humans.

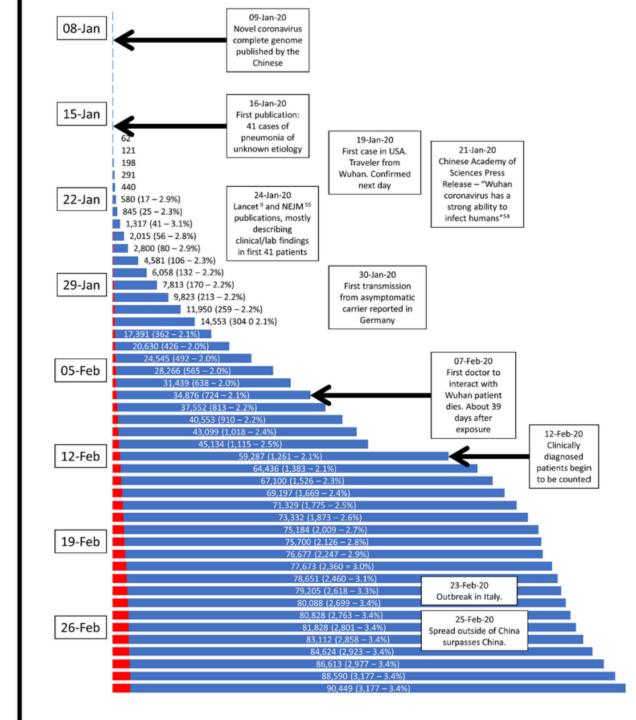

Human Coronavirus Origins


- The most likely ecological reservoirs for coronaviruses are bats, but it is believed that the virus jumped the species barrier to humans from another intermediate animal host.
- This intermediate animal host could be a domestic food animal, a wild animal, or a domesticated wild animal which has not yet been identified.

Coronaviruses

- Coronaviruses belong to the Coronaviridae family in the Nidovirales order
- Corona represents crown-like spikes on the outer surface of the virus; thus, it was named as a coronavirus
- Coronaviruses are enveloped viruses, minute in size (65 – 125 nm in diameter) and contain a single-stranded RNA as a nucleic material, size ranging from 26 to 32kbs in length





(A) Spike proteins on the surface of the coronavirus bind to angiotensin-converting enzyme 2 (ACE-2) receptors on the surface of the target cell

(B) the type II transmembrane serine protease (TMPRSS2) binds to and cleaves the ACE-2 receptor. In the process, the spike protein is activated

(C) Cleaved ACE-2 and activated spike protein facilitate viral entry. TMPRSS2 expression increases cellular uptake of the coronavirus

SARS-CoV-2 Variant Classifications and Definitions

• Variant of Interest (VOI)

A variant with specific genetic markers that have been associated with changes to receptor binding, reduced neutralization by antibodies generated against previous infection or vaccination, reduced efficacy of treatments, potential diagnostic impact, or predicted increase in transmissibility or disease severity.

• Variant of Concern (VOC)

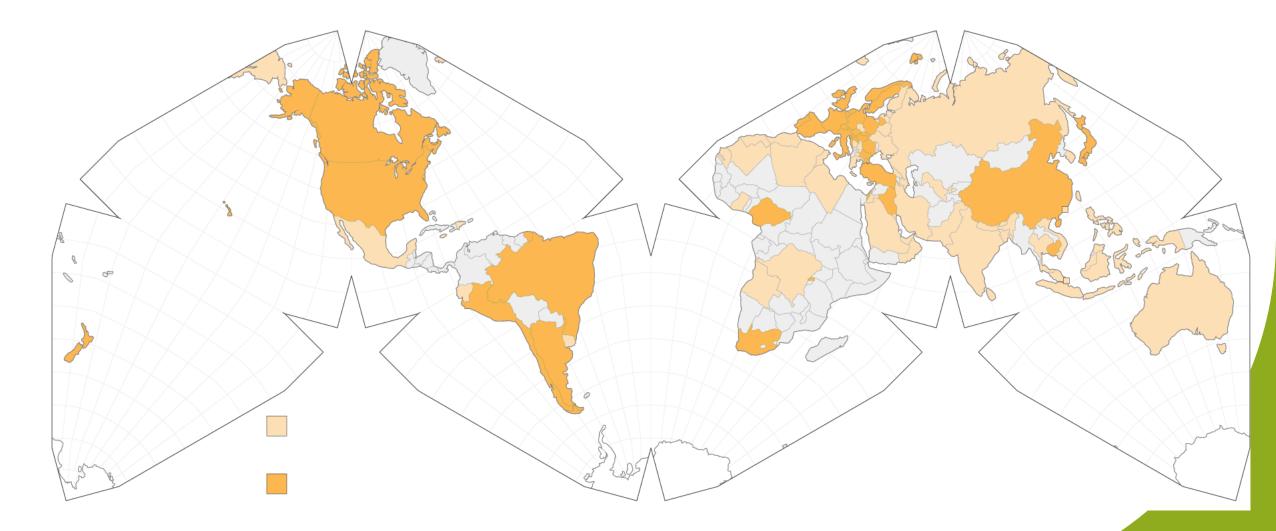
A variant for which there is evidence of an increase in transmissibility, more severe disease (e.g., increased hospitalizations or deaths), significant reduction in neutralization by antibodies generated during previous infection or vaccination, reduced effectiveness of treatments or vaccines, or diagnostic detection failures.

Variant of Concern (VOC) _ updated 24 May 2021

Lineage + additional mutations	Country first detected (community)	Spike mutations of interest	Year and month first detected	Evidence for impact on transmissibility	Evidence for impact on immunity	Evidence for impact on severity	Transmission in EU/EEA
B.1.1.7	United Kingdom	N501Y, D614G, P681H	September 2020	Yes (v) [1]	Unclear [2]	Yes (v) [3, 4]	Dominating
B.1.1.7+E484K	United Kingdom	E484K, N501Y, D614G, P681H	December 2020	Yes (v) [1]	Neutralisation (v) [2, 5]	Yes (v) [3]	Outbreaks
B.1.351	South Africa	K417N, E484K, N501Y, D614G, A701V	September 2020	Yes (v) [6]	Escape (v) [7, 8]	Yes (v) [4, 9]	Community
P.1	Brazil	K417T, E484K, N501Y, D614G, H655Y	December 2020	Yes (v) [10]	Neutralisation (v) [11]	Yes (v) [4]	Community
B.1.617.2	India	L452R, T478K, D614G, P681R	December 2020	Yes (v) [12-14]	Escape (v) [15]		Community

VOC (renamed by WHO, 31 May 2021)

WHO label	Pango lineage	GISAID clade/lineage	Nextstrain clade	Earliest documented samples	Date of designation
Alpha	B.1.1.7	GRY (formerly GR/501Y.V1)	20I/S:501Y.V1	United Kingdom, Sep-2020	18-Dec-2020
Beta	B.1.351	GH/501Y.V2	20H/S:501Y.V2	South Africa, May-2020	18-Dec-2020
Gamma	P.1	GR/501Y.V3	20J/S:501Y.V3	Brazil, Nov-2020	11-Jan-2021
Delta	B.1.617.2	G/452R.V3	21A/S:478K	India, Oct-2020	VOI: 4-Apr-2021 VOC: 11-May-2021


Variant of Concern (VOC) _ updated 24 May 2021

Lineage + additional mutations	Country first detected (community)	Spike mutations of interest	Year and month first detected	Evidence for impact on transmissibility	Evidence for impact on immunity	Evidence for impact on severity	Transmission in EU/EEA
B.1.525	Nigeria	E484K, D614G, Q677H	December 2020		Neutralisation (m) [5]		Community
B.1.427/B.1.429	USA	L452R, D614G	September 2020	Unclear [12]	Neutralisation (v) [12]		Sporadic/Travel
P.3	The Philippines	E484K, N501Y, D614G, P681H	January 2021	Yes (m) [1]	Neutralisation (m) [5]		Sporadic/Travel
B.1.616	France	V483A, D614G, H655Y, G669S	February 2021	Detection (c) [13]			Single outbreak
B.1.617.1	India	L452R, E484Q, D614G, P681R	December 2020	Yes (v) [14]	Neutralisation (v) [15, 17]		Outbreaks
B.1.617.3	India	L452R, E484Q, D614G, P681R	February 2021	Yes (m) [1]	Neutralisation (m) [5, 12]		Not detected
B.1.620	Unclear (b)	S477N, E484K, D614G, P681H	February 2021		Neutralisation (m) [5, 14]		Outbreaks
B.1.621	Colombia	R346K, E484K, N501Y, D614G, P681H	January 2021	Yes (m) [1]	Neutralisation (m) [5]		Sporadic/Travel

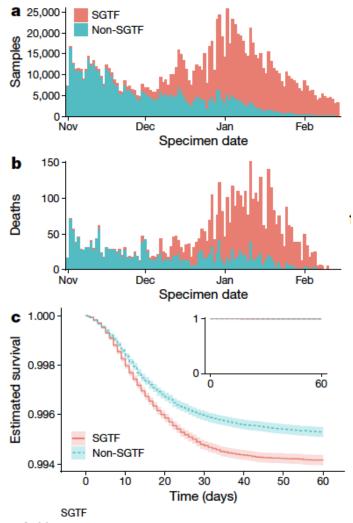
VOI (renamed by WHO, 31 May 2021)

WHO label	Pango lineage	GISAID clade/lineage	Nextstrain clade	Earliest documented samples	Date of designation
Epsilon	B.1.427/B.1.429	GH/452R.V1	20C/S.452R	United States of America, Mar-2020	5-Mar-2021
Zeta	P.2	GR	20B/S.484K	Brazil, Apr-2020	17-Mar-2021
Eta	B.1.525	G/484K.V3	20A/S484K	Multiple countries, Dec-2020	17-Mar-2021
Theta	P.3	GR	20B/S:265C	Philippines, Jan-2021	24-Mar-2021
lota	B.1.526	GH	20C/S:484K	United States of America, Nov-2020	24-Mar-2021
Карра	B.1.617.1	G/452R.V3	21A/S:154K	India, Oct-2020	4-Apr-2021

Where B.1.1.7 (UK Variant) Has Been Found

https://www.nytimes.com/interactive/2021/health/coronavirus-variant-tracker.html

Increased Transmissibility in UK Variant


Table 1. Estimates of increased reproduction number for VOC 202012/01. Means and 95% Cls (GLMM) or 95% Crls (*R*t regression, transmission model) are shown. GLMM models do not estimate a baseline growth rate or reproduction number. Increases in the reproduction number assume a generation interval of 5.5 days. See table S1 for full details.

Model type	Model	Model assumptions	·		Baseline growth rate	Additive increase in growth rate, ∆r	Baseline reproduction number	Multiplicative increase in reproduction number
GLMM	la	Separate-slopes multinomial spline model*	Sequence	Regions of UK	-	0.104 [0.100, 0.108]	-	77% [73, 81]
GLMM	1b	Common-slope multinomial model*	Sequence	Lower-tier local authorities of UK	-	0.093 [0.091, 0.095]	-	67% [65, 69]
GLMM	2h	Separate-slope binomial spline model†	S gene target failure‡	Regions of England	-	0.109 [0.107, 0.111]	-	83% [81, 84]
R _t regression	4a	Regional time- varying baseline	S gene target failure	Upper-tier local authorities of England	0.007 [0.002, 0.012]	0.067 [0.060, 0.073]	1.04 [1.01, 1.07]	43% [38, 48]
R _t regression	4b	Regional static baseline	S gene target failure	Upper-tier local authorities of England	0.007 [0.002, 0.012]	0.085 [0.079, 0.091]	1.04 [1.01, 1.07]	57% [52, 62]
Transmission model	5a	Increased transmissibility	S gene target failure‡	Regions of England	-0.001 [-0.017, 0.012]	0.118 [0.067, 0.168]	1.01 [0.94, 1.09]	82% [43, 130]
GLMM	3a	Common-slope binomial model†	Sequence	Regions of Denmark	-	0.080 [0.067, 0.092]	_	55% [45, 66]
GLMM	3b	Common-slope binomial model†	Sequence + RT-PCR rescreening	Regions of Switzerland	-	0.101 [0.092, 0.109]	-	74% [66, 82]
GLMM	3c	Common-slope binomial model†	S gene target failure‡	States of USA	-	0.084 [0.080, 0.088]	-	59% [56, 83]

*VOC 202012/01 versus B.1.177. †VOC 202012/01 versus all other variants. ‡Binomial counts adjusted for the true positive rate (proportion of S gene target failures that are VOC 202012/01), estimated from misclassification model (for UK) or a binomial GLMM fitted to sequencing data of S gene target failures (for US).

DOI: https://doi.org/10.1126/science.a bg3055

Increased Mortality in Cases of UK Variant

 At risk
 674,539
 625,587
 549,622
 448,192
 303,131
 155,715
 0

 Censored
 0
 47,638
 122,338
 223,187
 368,094
 515,475
 671,181

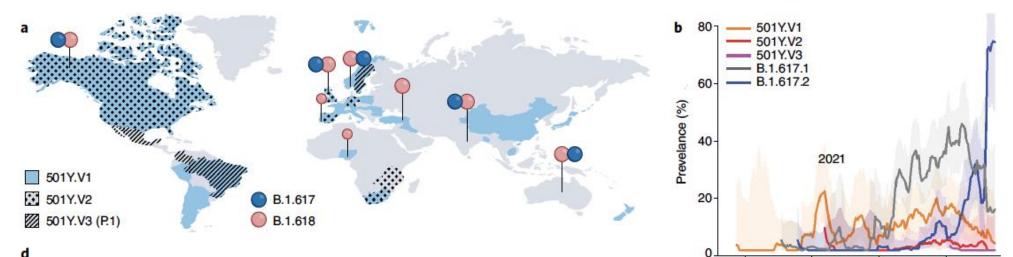
 Events
 0
 1,314
 2,579
 3,160
 3,314
 3,349
 3,358

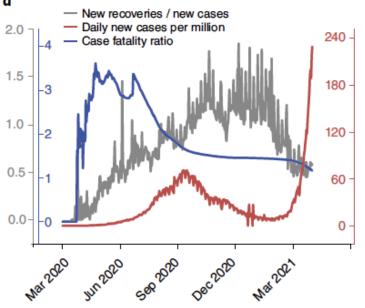
Non-SGTF

 At risk
 471,995
 469,441
 463,358
 450,813
 420,343
 374,946
 0

 Censored
 0
 1,783
 7,095
 19,279
 49,595
 94,921
 469,822

 Events
 0
 771
 1,542
 1,903
 2,057
 2,128
 2,173

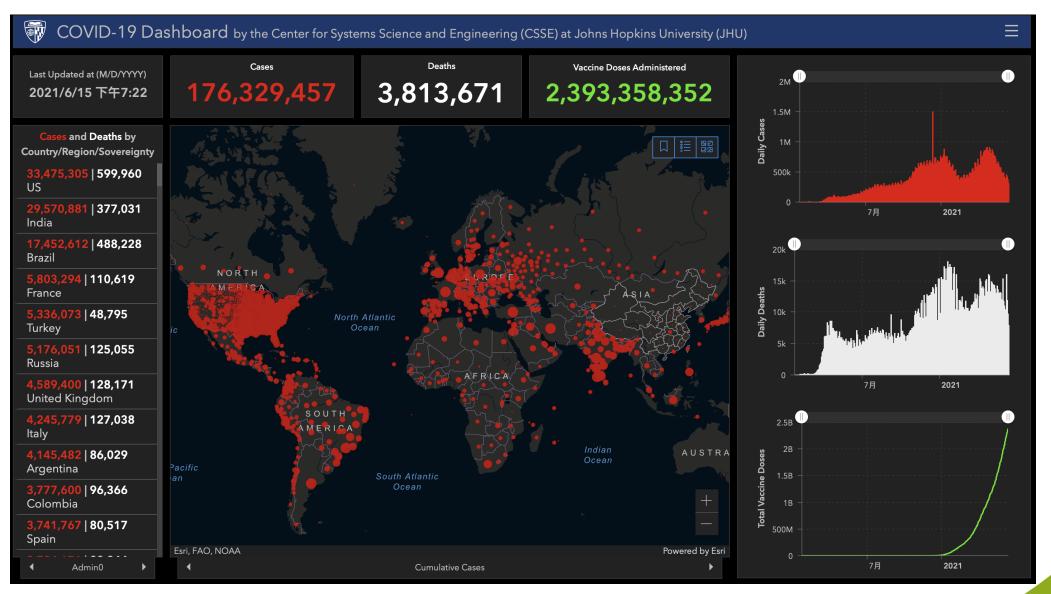

Table 1 | Absolute 28-day mortality risk for B.1.1.7


	Age	Baseline	Mortality risk for B.1.1.7	1	
	(years)	mortality	SGTF for complete cases	p _{voc} IPW	
Female	1–34 0.00069%		0.0011% (0.00096- 0.0012%)	0.0011% (0.00097– 0.0012%)	
	35-54	0.033%	0.050% (0.045– 0.056%)	0.052% (0.046- 0.059%)	
	55-69	0.18%	0.28% (0.25-0.31%)	0.29% (0.26–0.33%)	
	70-84	2.9%	4.4% (4.0-4.9%)	4.6% (4.0–5.1%)	
	85 and older	13%	19% (17–21%)	20% (18–22%)	
Male	1–34	0.0031%	0.0047% (0.0042– 0.0052%)	0.0049% (0.0043– 0.0055%)	
	35–54	0.064%	0.099% (0.089–0.11%)	0.10% (0.090–0.12%)	
	55-69	0.56%	0.86% (0.77–0.95%)	0.89% (0.78–1.0%)	
	70-84	4.7%	7.2% (6.4–7.9%)	7.4% (6.6–8.3%)	
	85 and older	17%	25% (23–27%)	26% (23–29%)	

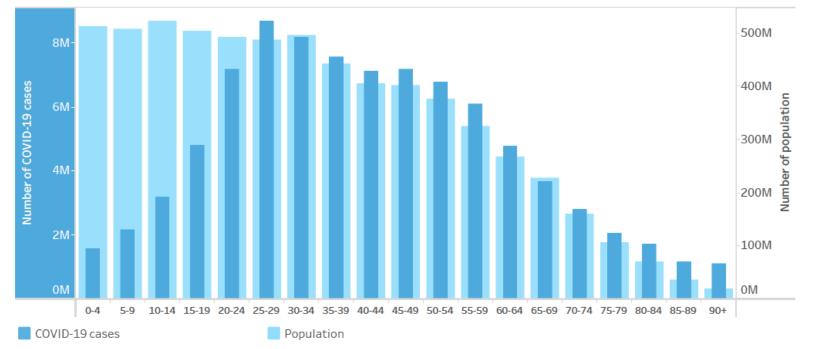
The absolute mortality risk is expressed as the case fatality ratio (%) among individuals testing positive in the community. The baseline risk (that is, for pre-existing SARS-CoV-2 variants) is derived using linked deaths within 28 days for all individuals testing positive in the community from 1 August to 31 October 2020. Adjusted risks are presented for the SGTF analysis for complete cases and for the misclassification-adjusted (p_{voc}) IPW analysis, which yielded the lowest and highest mortality estimates, respectively, of the main models assessed (Fig. 2a–d).

DOI: https://doi.org/10.1038/s41586-021-03426-1

B.1.617.2 COVID (India Variant), More Transmissible

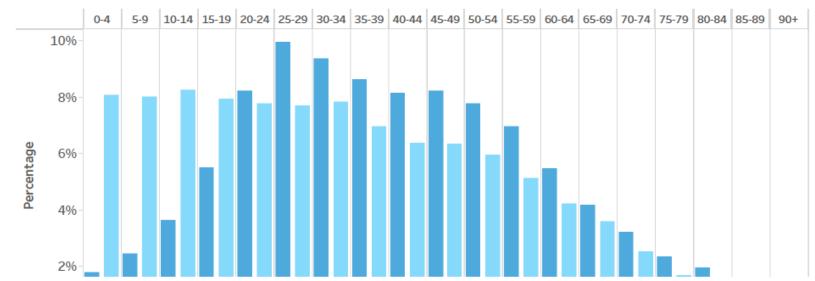

DOI: https://doi.org/10.1038/s41591-021-01397-4

	New WHO Name	Transmissibility	lmmune Evasiveness	Vaccine Effectiveness [^]
Ancestral		—	—	\checkmark
D614G		+		\checkmark
B.1.1.7	Alpha	+++		\checkmark
B.1.351	Beta	+	++++	\checkmark
P.1	Gamma	++	++	\checkmark
B.1.429	Epsilon	+	+	\checkmark
B.1.526	lota	+	+	\checkmark
B.1.617.2	Delta	++++*	++#	\checkmark

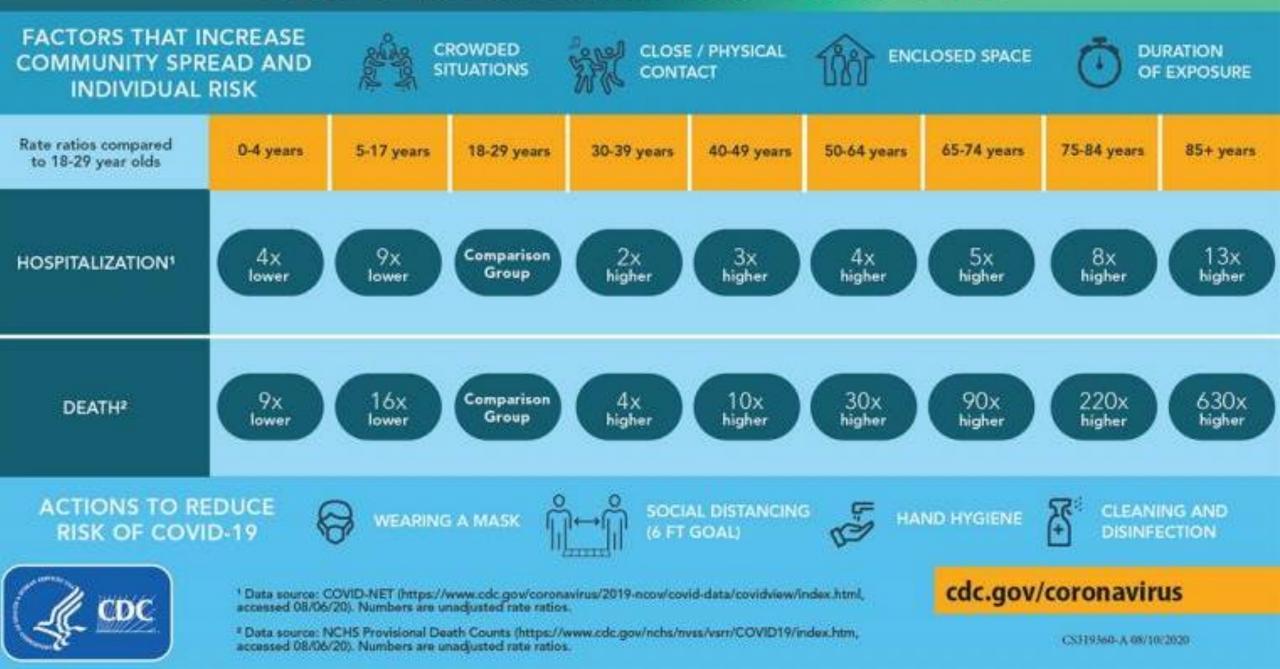

*Relative transmissibility to B.1.1.7 yet to be fully defined

^Effectiveness from real world evidence vs. severe illness, not all vaccines are effective vs all variants, and importance of 2-doses, especially for B.1.617.2 for which 1 dose of mRNA or AZ is only ~30% effective # May carry more immune escape than P.1, to be determined

Geographic Distribution (Worldwide)

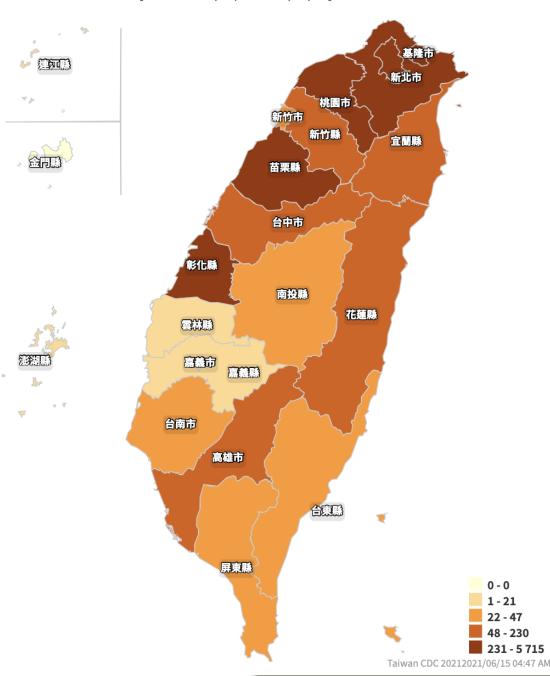


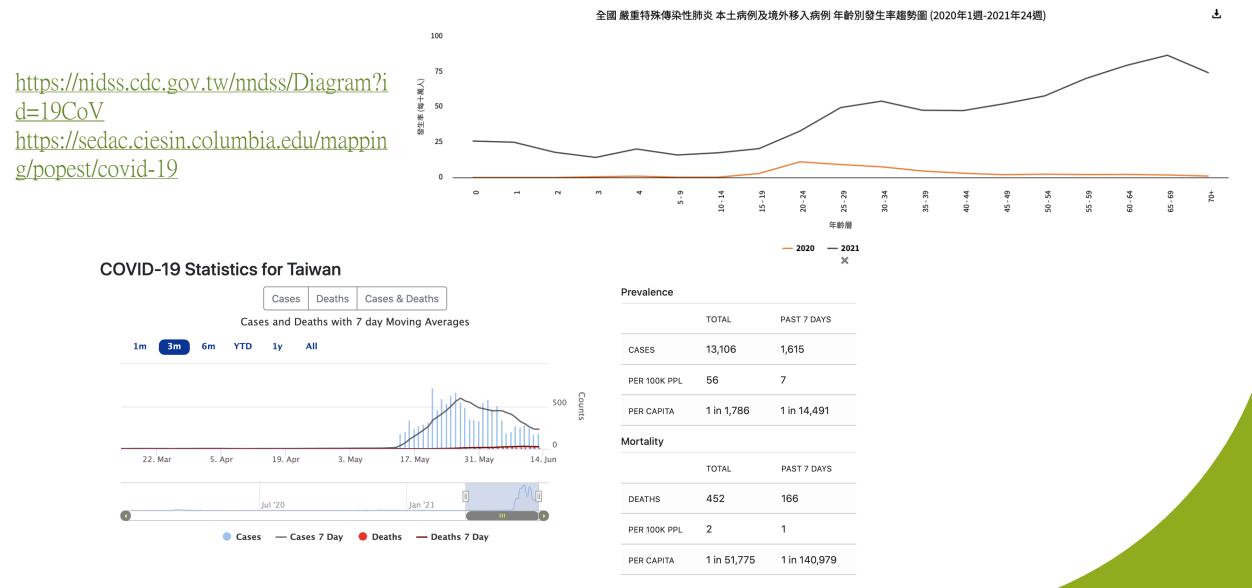
https://gisanddata.maps.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6 https://sedac.ciesin.columbia.edu/mapping/popest/covid-19


COVID-19 in Children (Global)

COVID-19 cases and population by 5-year age groups (in per cent) in 100 countries

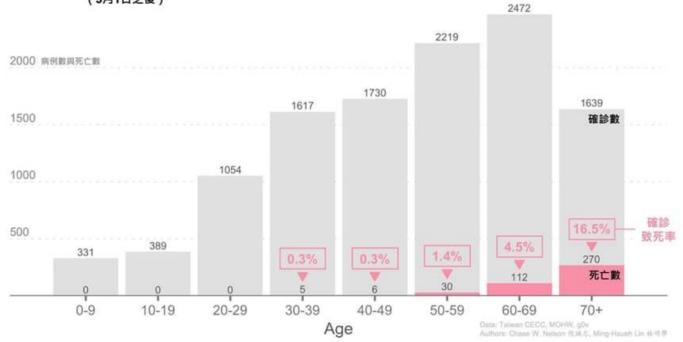
COVID-19 cases and population by 5-year age groups (in numbers) in 100 countries


COVID-19 HOSPITALIZATION AND DEATH BY AGE


全國 嚴重特殊傳染性肺炎 本土病例 地理分佈 (2021年-2021年) [發病日 2021/01/01-2021/12/31]

Geographic Distribution (Domestic data)

https://nidss.cdc.gov.tw/nndss/Diagram?id=19CoV



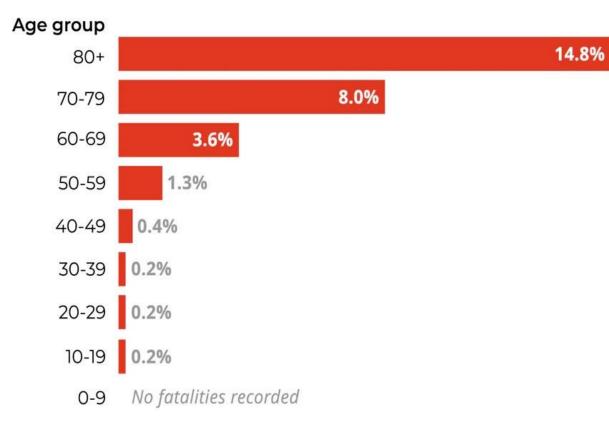
Age-specific Trend of Domestic Data

Last updated on 6/15/2021. Per 100k proportions were calculated using SEDAC's 2020 GPW population data. Source of COVID-19 Data: Johns Hopkins University Center for Systems Science and Engineering (CSSE).

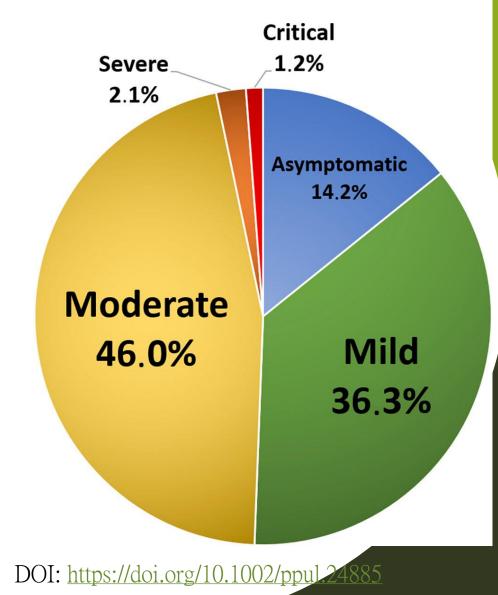
2021 台灣近期本土Covid-19病例與死亡累計 | 年齡分配 | 6月13日 (5月1日之後)

表1 2021/4/20-6/13的COVID-19年齡別本土確診病例人數、重症人數、死亡人數、重症率及致死率

年齡(歲)	確診病例人數 (%)	重症人數	死亡人數	重症率	致死率
0-9	340 (2.9%)	1	0	0.3%	0%
10-19	401 (3.5%)	2	0	0.5%	0%
20-29	1,076 (9.3%)	26	0	2.4%	0%
30-39	1,641 (14.1%)	78	5	4.8%	0.3%
40-49	1,768 (15.2%)	165	6	9.3%	0.3%
50-59	2,249 (19.3%)	371	30	16.5%	1.3%
60-69	2,500 (21.5%)	707	117	28.3%	4.7%
70-79	1,166 (10.0%)	496	134	42.5%	11.5%
80+	495 (4.3%)	213	133	43.0%	26.9%


表2 2021/4/20前後的COVID-19年齡別本土確診病例人數、重症率及致死率

年齡(歲)	20	21/4/19以前		2021/4/20以後			
	確診病例人數	重症率	致死率	確診病例人數	重症率	致死率	
0-49	44 (57.1%)	2.3%	0%	5,226 (44.9%)	5.2%	0.2%	
50-69	26 (33.8%)	38.5%	11.5%	4,749 (40.8%)	22.7%	3.1%	
70+	7 (9.1%)	42.9%	28.6%	1,661 (14.3%)	42.7%	16.1%	


COVID-19 in Children (Global)

COVID-19 death rate by age group

Death rate due to COVID-19 (all cases)

Severity of illness in children with COVID-19

Source: Author provided

COVID-19 in Children (Global)

DOI: https://doi.org/10.1016/j.jcv.2020.10 4715

Clinical Symptom	S									
	No. Studies (N)	Total Cases (n)						Prevalence (%) [95% Cl]	1² (%)	Egger's test p-value
Asymptomatic	20	222		H H I				13 [11-14]	78%	0.019
Fever	19	592				—• —		55 [52-58]	61%	0.680
Cough	17	467						45 [42-49]	79%	0.156
Dyspnea	11	169						19 [16-22]	93%	0.008
Sore throat	11	18	r#-1					3 [2-4]	60%	0.005
Rhinorrhea	9	38	H					6 [4-8]	44%	0.700
Congestion	8	69		—				20 [16-25]	75%	0.115
Headahce	5	117					_	67 [60-74]	46%	0.896
Fatigue	6	53	, .	-				9 [7-11]	0%	0.037
Myalgia	7	194						35 [32-40]	90%	0.011
GI symptoms	16	65	P-1					6 [5-8]	83%	0.007
Others *	7	57	H.	L				10 [8-13]	79%	0.062
Laboratory Findin	gs		0	20	40	60	80			
Leukocytosis	11	32						5 [4-8]	0%	0.062
Leukopenia	11	68	H					12 [9-15]	50%	0.020
Lymphocytosis	10	27	H=					5 [3-7]	0%	0.334
Lymphopenia	10	82	⊢					15 [13-19]	85%	0.754
↑ LDH	6	9						11 [6-21]	0%	0.091
↑ D-dimer	6	34	,					15 [11-21]	19%	0.056
AST/ALT	6	65		—				17 [14-22]	0%	0.170
CRP	10	103						19 [16-22]	74%	0.053
ESR	3	9	H 1					5 [3-10]	72%	0.545
Procal	5	95		—				25 [21-29]	83%	0.497
Ferritin	2	15						26 [16-40]	73%	NA
Radiological Feat	ires		0	20	40	60	80			
Normal	16	302						33 [30-36]	81%	0.015
Consolidtion +	16	180						29 [26-33]	85%	0.033
GGO	16	295						36 [32-39]	92%	0.092
			0	20	40	60	80			

Study	Patients n	Median Age	Infants (0-1 yrs) n (%)	Male n (%)	Positive SARS- CoV-2 RT-PCR n (%)	Underlying medical conditions n (%)	No symptoms n (%	Fever n (%)	Respiratory (cough/SOB) n (%)	Pneumonia n (%)	GI (vomiting/ diarrhea) n (%)	Hospitalized n (%)	ICU care/ mechanical ventilation n (%)	Mortality n (%)
Zachariah et al. ¹⁷ (New York)	50	11	14 (34)	27 (54)	50 (100)	33 (67)	0 (0)	40 (80)	23 (46)/ 17 (34)		7 (14)	50 (100)	-/9 (18)	1 (2)
Götzinger et al. ¹⁸ (Europe)	582	5	230 (40) ^d	311 (53)	582 (100)	145 (25)	92 (16)	379 (65)	313 (54)/-	93/198 (47)	128 (22)	363 (62)	48 (8)/25 (4)	4 (1)
Garazzino et al. ¹⁶ (Italy)	168	2.3	66 (39)	94 (56)	168 (100)	33 (20)	4 (3)	138 (32)	82 (49)/ 16 (10)	75 (45)	9 (5)/ 22 (13)	110 (65)	2 (1)/2 (1)	0 (0)
Swann et al. ⁵⁰ (UK)	651	4.6	225 (35)	367 (56)	651 (100)	276 (42)	0 (0)	431/ 617 (70)	233/599 (39)/173/ 570 (30)	-	179/ 564 (32)	651 (100)	116/632 (18)/58/ 620 (9)	6/627 (1)
Dong et al. ⁵ (China)	2143	7	379 (18)	1213 (57)	731 (34)	-	94 (4)	-	-	-	-	-		-
Han et al. ⁴ (South Korea)	91	11	6 (7)	53 (58)	91 (100)	6 (7)	20 (22)	62 (68)	54 (60)		16 (18)	91 (100) ^a	0 (0)/0 (0)	0 (0)
Shekerdemian et al. ⁵¹ (USA/ Canada)	48	13	8 (17)	25 (52)	48 (100)	40 (83)	1 (2)	-	35 (73)	-	1 (2)	48 (100)	48 (100)/ 18 (38)	2 (4)
Cura Yayla et al. ¹⁹ (Turkey)	220	10		105 (48)	220 (100) ^b	22 (10)	55 (26)	89 (41)	79 (36)/9 (4)	74 (34)	9 (4)/17 (8)	220 (100)	3 (1)	2 (1)
Lu et al. ²⁰ (Wuhan)	171	6.7	31 (18)	104 (61)	171 (100)	-	27 (16)	71 (42)	83 (49)/ 49 (29)	111 (65)	11 (6)/ 15 (9)	-	3 (2)/3 (2)	1 (1)
Parri et al. ⁵² (Italy)	100	3.3	40 (40)	57 (57)	100 (100)	27 (27)	21 (21)	28/ 54 (52)	44 (44)/ 11 (11)	20 (20)	10 (10)	67 (67)	-/1 (1)	0 (0)
Yonker et al. ²¹ (MA. USA)	49	12.7	2 (4)	23 (47)	49 (100)	-	0 (0)	25 (51)	23 (47)/8 (16)	-	3 (6)/3 (6)	-	•	-

TABLE 3 Demography, clinical characteristics and outcomes of SARS-CoV-2 in children

COVID-19 in Children (China)

Age Group, y ^a	Asymptomatic, n (%)	Mild, <i>n</i> (%)	Moderate, n (%)	Severe, <i>n</i> (%)	Critical, n (%)	Total, <i>n</i>
<1	7 (1.9)	204 (54.2)	125 (33.2)	33 (8.8)	7 (1.9)	376
1–5	15 (3.1)	245 (49.9)	195 (39.7)	34 (6.9)	2 (0.4)	491
6-10	30 (5.8)	277 (53.3)	191 (36.7)	22 (4.2)	0 (0.0)	520
11-15	27 (6.5)	198 (48.1)	170 (41.3)	14 (3.4)	3 (0.7)	412
>15	15 (4.5)	164 (49.1)	145 (43.4)	9 (2.7)	1 (0.3)	334
Total	94 (4.4)	1088 (51.0)	826 (38.7)	112 (5.3)	13 (0.6)	2133

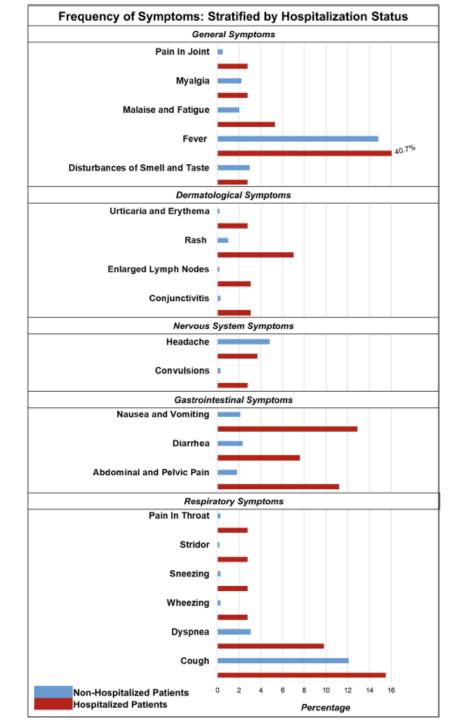
TABLE 2 Different Severity of Illness by Age Group

January 16, 2020, to February 8,2020

DOI: https://doi.org/10.1542/peds.2020-0702

TABLE 1 Characteristics of Children's COVID-19 Cases in China

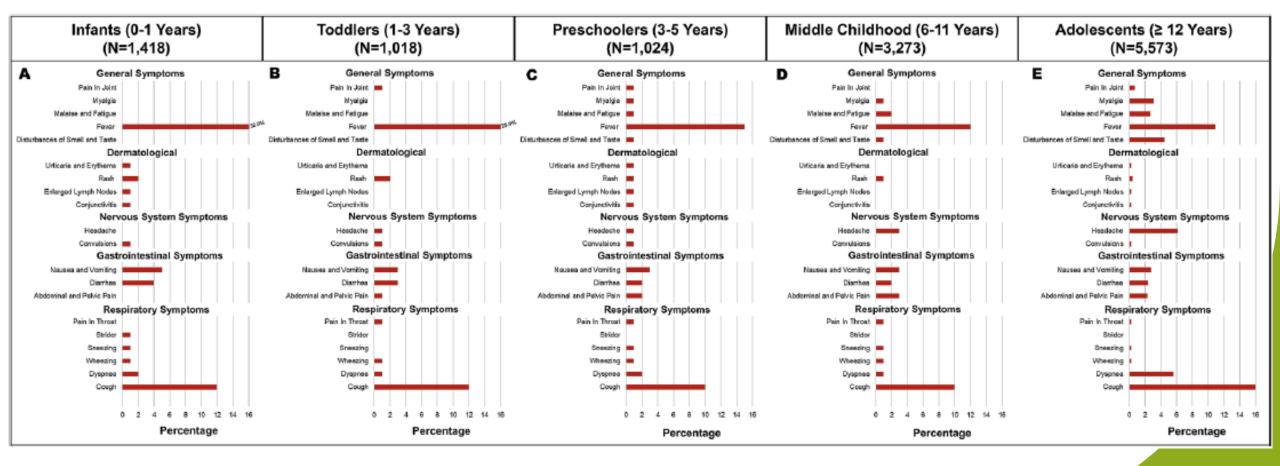
Characteristics	All Cases	Cate	gory	Р
		Confirmed	Suspected	
Age, median (interquartile range)	7 (2–13)	10 (4–15)	6 (2-12)	<.001
Age group, n (%)				
<1	379 (17.6)	85 (11.7)	291 (20.7)	<.001
1–5	491 (23.0)	137 (18.8)	354 (25.2)	
6-10	522 (24.5)	170 (23.4)	352 (25.0)	
11–15	412 (19.3)	180 (24.7)	232 (16.5)	
>15	334 (15.6)	156 (21.4)	178 (12.6)	
Sex, n (%)				
Male	1208 (56.6)	418 (57.4)	790 (56.1)	.575
Female	927 (43.4)	310 (42.6)	617 (43.9)	
Severity of illness, n (%)				
Asymptomatic	94 (4.4)	94 (12.9)	0 (0.0)	_
Mild	1088 (51.0)	314 (43.1)	774 (55.0)	<.001
Moderate	826 (38.7)	298 (40.9)	528 (37.5)	
Severe	112 (5.2)	18 (2.5)	94 (6.7)	
Critical	13 (0.6)	3 (0.4)	10 (0.7)	
Missing	2 (0.1)	1 (0.2)	1 (0.1)	
Days from symptom onset to diagnosis				
Median (interquartile range)	2 (1-5)	3 (1–5)	2 (0-4)	<.001
Range	0-42	0-42	0-36	_
Province, n (%)				
Hubei	981 (46.0)	229 (31.5)	752 (53.4)	<.001
Surrounding areas ^a	396 (18.5)	154 (21.1)	242 (17.2)	
Other	758 (35.5)	345 (47.4)	413 (29.4)	
Total	2135	728 (34.1)	1407 (65.9)	—


COVID-19 in Children (China)

DOI: https://doi.org/10.1542/peds.2020-0702

Characteristics	Non-hospitalized cohort (total N=11,634)		Hospitalized co	Hospitalized cohort (total N=672)		
	Patient count	Mean±SD or proportion	Patient count	Mean±SD or proportion	P-value	Standardized mean difference
Age (years)	11,634	9.4±5.6	672	9.0±6.2	0.13	0.06
Age groups				< 0.001	0.53	
Infant (0–1 years)	1345	11.6%	73	10.9%		
Toddlers (1–3 years)	933	8.0%	85	12.6%		
Preschoolers (3–5 years)	959	8.2%	65	9.7%		
Middle childhood (6–11 years)	3146	27.0%	127	18.9%		
Adolescents (≥12 years)	5256	45.1%	317	47.1%		
Male	5954	51.2%	343	51.0%	0.94	0.002
Female	5678	48.8%	329	49.0%		
Race/ethnicity	•	•	·	•	•	•
Non-Hispanic Whites	6064	52.1%	243	36.2%	< 0.001	0.18
Non-Hispanic Blacks	3066	26.4%	223	33.2%	< 0.001	0.21
Hispanic	1889	16.2%	133	19.8%	< 0.001	0.16
Non-Hispanic Asians	273	2.3%	19	2.8%	0.43	0.03
Other	342	2.9%	54	8.0%	0.04	0.08
Comorbidities	•	•	·	•	•	•
Cardiovascular	94	0.8%	102	15.2%	< 0.001	0.54
Gastrointestinal	334	2.9%	121	18.0%	< 0.001	0.51
Hematologic or immunologic	57	0.5%	45	6.7%	< 0.001	0.30
Malignancy	51	0.4%	34	5.1%	< 0.001	0.29
Metabolic	79	0.8%	69	10.3%	< 0.001	0.38
Neurological and Neuromuscular	252	2.2%	92	13.7%	< 0.001	0.44
Congenital or genetic defects	127	1.1%	191	28.4%	< 0.001	0.83
Renal and urologic	175	1.5%	87	13.0%	< 0.001	0.45
Respiratory	2,310	19.9%	189	28.1%	< 0.001	0.20

COVID-19 in Children (US)


DOI: https://doi.org/10.1038/s41598-021-89553-1

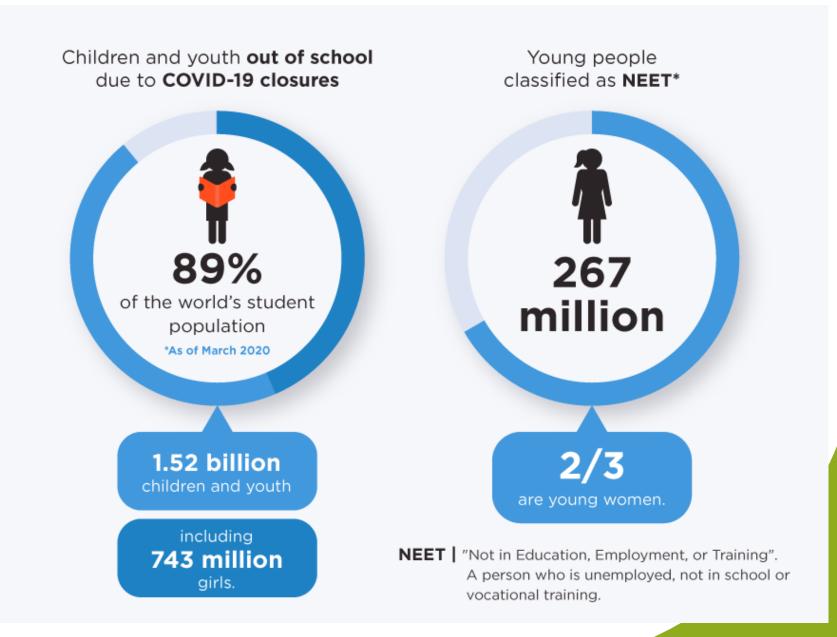
COVID-19 in Children (US)

DOI: https://doi.org/10.1038/s41598-021-89553-1

COVID-19 in Children (US)

DOI: https://doi.org/10.1038/s41598-021-89553-1

Impact of the COVID-19 Pandemic on Children


• Illness

• Education

• Mental health

• Health and Development

Impact on Education

Impact on Mental Health

• Mental health visits saw a 24% increase for children ages 5 to 11, and 31% for older minors.

• More vulnerable to mental health conditions such as depression and anxiety due to the pandemic and its consequences,

Impact on Health and Development

Stressful pressures such as these can negatively impact a child's neurological development, especially in infancy or early childhood → depression in adulthood

• Elevated maternal death and infant mortality (disrupted access to healthcare and food)

Thank for Your Attention !